Fat in dairy diets

Lou Armentano, UW Madison Emeritus

Major changes in NRC 8 vs. 7 (for your records)

	NRC 7	NRC 8	
Fat amount	Ether Extract (crude fat)	Fatty Acid – as COOH	In 8
FA content calculation	EEx-1	FA by measurement or regression from EEx	FA content a user variable in "new" feeds
FA Digestibility in basal	True dig. Set to 100% at maintenance DMI	Estimated by regression to be 73% true digest.	FA digestibility also a user variable for any new feed
FA Class (supplements)	TDN class – FAT or FAT with Glycerol	Can call FA nonesterified to calculate rOM correctly	
True vs Apparent Digestibility	TDN and DE are apparent Endogenous fecal energy	True=Apparent (no endogenous FA)	
Digestibility of FA supplements	5 supplements Included (digestibility <100%)	10 FA rich feeds included	
Fat on DE to ME efficiency	DE to ME increased for EEx over 3%	ME of diet increased with FA due to less Methane	All FA same from 0% up
Fat on ME to NE efficiency	80% for EEx > 3%, vs 70% ©2022	Same as all other ME	NE=.66*ME 2

FA as energy source greatly simplified in NRC 8

- FA not Ether extract or crude fat
- No endogenous FA used so apparent and true digestibility are same
- 'native' FA digestion <u>variable</u> set at 73% <u>in library</u> to get DE (digestible energy)
- Supplements classified by FA content and grouped into classes
- DE to ME uses diet methane production
 - Fat reduces diet methane
 - Therefore higher FA diets have increased DE to ME by that diet methane prediction
- ME to NE efficiency same for FA as all other energy sources (.66)
- Dry matter intake
 - Diet adjusted DM Intake equation does not reduce intake with FA in diet
 - Increased DM Intake does not reduce FA digestibility
 - Increased FA in diet does not reduce FA digestibility
 - adding FA no direct effect on NDF digestion (but removing starch increases NDF digestion)

Model with no DMI or FA concentration induced depression of FA digestibility fits data well

- In 7 DMI affected all DE, in 8 no effect of DMI on FA digestion
- Amount of FA (or EEX) does not alter FA digestion in either model

Basal

			Mcal/kg DM	% of CE	% of DE	% of M		
Feed Ingredient	% of DM							
Corn Grain, fine grind	37.4%	NRC 8						
Corn Silage	24.2%	DE	3.01	72.0				
Corn Oil, 70% dig FA	0%	ME	2.61	62.5	86.7			
Grass-Legume	24.2%	NE	1.72	41.2	57.2	66.0		
Soy Bean Meal	10.0%			NRC 7				
Salt	4%		64.4					
[FA]	(2.6%)	IDNd?	61.1					
	(1.00/)	DE(?)	2.46					
[[[]]	(1.8%)	ME	2.37		96.5			
24.75 k	kg DM/day		2107		0.0			
		NE	1.57		61.1	63.3		

Corn Oil replaces <u>Salt</u>

			Mcal/kg DM	% of	% of	% of MF
Feed Ingredient	% of DM			GE	DE	
Corn Grain, fine grind	37.4%			NRC 8		
Corn Silage	24.2%					
		DE	3.28	/2.2		
Corn Oil, 70% dig FA	4.0%	ME	2.94	64.7	89.5	
Grass-Legume	24.2%	NE	1 0/	12 7	50 1	66.0
Sov Bean Meal	10.0%	INE	1.74	42.7	JJ.I	00.0
				NRC 7		
Salt	0%	TDNd?	69.0			
[FA]	(6.1%)					
ניאן	(0.170)	DE?	2.87			
[EEX-1]	(6.2%)	ME	2.66		92.6	
		NE	1.71		59.6	64.3

Oil for salt substitution (Δ = delta = effect of added FA)

	Δ FA%	∆ DE	Δ ΜΕ	Δ ΝΕ	Δ ME/ Δ DE)	Δ ΝΕ/Δ ΜΕ
			-Mcal/kg	DMI		
Corn Oil – NRC 8	3.5	0.27	0.33	0.22	1.22	0.67
Corn Oil – NRC 7	4.4	0.42	0.29	0.21	.70	0.72

```
Methane (Mcal/d) = + .294 * Dry Matter Intake kg
- .347 * %Fatty acid in DM
+ .0409* %digest NDF in DM
```

Methane loss is ~7 Mcal/d, so -.347 is a **big** coefficient

This is the only non-additive effect of FA addition on any Energy intake fraction

Note: NRC 7 feed library data changed feed Fat to equal Crude Fat reported in NRC 8

©2022 Armentano

Why did I replace salt?

- Not what you would do in practice
- To show model results without associative effects of OTHER components that are reduced when replaced by FA
- Energy system in NRC 8 and associative digestion effects:
 - Dry matter intake and Starch cause loss of disgestion
 - It is only NDF digestion that is reduced

Oil or starch substitution for salt in NRC 8

	Δ FA%	∆ DE	ΔΜΕ	Δ ΝΕ	Δ ME/ Δ DE)	Δ ΝΕ/Δ ΜΕ
			-Mcal/kg	DMI		
Corn Oil for salt	3.5	0.27	0.33	0.22	1.22	~0.66
Starch for salt	0	0.13	0.13	0.09	1.00	~0.66

Diet	NDF digestion	Gas energy (Mcal/d)
Salt	45.67%	6.86
Oil	45.67%	5.62
Starch	43.29%	6.83

Regression Model ttNDFd

		ΔttNDFd (%)				
Fat Supplement Type	Δ	Δ3	SE	P-value		
C12/C14	-2.7	-8.0	0.4	<0.001		
Oil	-0.6	-1.9	0.2	0.01		
C16	-0.3	-0.9	0.4	0.47		
Animal – Vegetable	-0.1	-0.2	0.3	0.87		
Tallow	-0.1	-0.3	0.3	0.66		
Calcium Salts Palm	0.5	1.6	0.3	0.12		
Calcium salts LCFA	0.3	0.8	0.3	0.32		
Saturated	0.4	1.3	0.3	0.09		

ME to NE conversion: should it be higher for FA? And would it matter?

- By my calculation using NE = .8 x ME for pure FA:
 - at 1% FA NE/ME= .658
 - at 7% FA NE/ME= .666
 - NRC 8 uses .66 constant
 - Difference negligible over practical range

Intake?

- No direct FA effect on dry matter intake in NRC diet adjusted DMI
 - Given a 2 "random" diets, FA content does not help you predict DMI
 - Best general intake equation mostly driven by fiber and forage but includes Milk Yield
- Restricting analysis to only studies where FA was added, FA decreased DMI
 - Given two related diets, adding (some kind) of FA can reduce intake
- Measure herd intake when changing FA in diet
- Remember intake affects associative effects on fiber and starch digestion and also methane production

Effect of 1% or 3% added FA on DM Intake

	ΔDMI in kg/d				
Fat Supplement Type	$\Delta 1$	Δ3	SE	P-value	
C12/C14	-1.1 ^c	-3.2	0.2	<0.001	
Oil	-0.3 ^{abc}	-0.9	0.1	0.01	
C16	-0.1 ^{ab}	-0.4	0.2	0.45	
Animal – Vegetable	-0.2 ^{ab}	-0.6	0.2	0.31	
Tallow	-0.3 ^{abc}	-1.0	0.1	0.01	
Calcium Salts Palm	-0.4 ^{abc}	-1.2	0.2	0.02	
Calcium salts LCFA	-0.6 ^{bc}	-1.8	0.1	<0.001	
Saturated Fat	0.2 ^a	0.7	0.1	0.09	

Looking forward

- Cows are fed (mostly) 5 fatty acids:
 - C16:0 Palmitic
 - C18:0 Stearic
 - C18:1 Oleic
 - C18:2 Linoleic
 - C18:3 Linolenic
- These are included in feed library
- You can count them on one hand !
- Pay attention to them <u>individually</u>

Effect of different diet FA on total Milk FAT yield

Milk FA class	Diet C16:0	Diet C18:0	Diet C18:1 & C18:3	Diet C18:2
<c16< td=""><td>No effect</td><td>No effect?</td><td>Decreases</td><td>Decreases</td></c16<>	No effect	No effect?	Decreases	Decreases
C16	Increases	No effect?	Decreases	Decreases
C18	No effect	Increase?	Increase	Increase?
Total	Increase	Increase?	Decrease	Decrease

Milk	Intero (±S	cept E)	P-value	FA as % of Diet	Slope (±SE)	P-value	AIC
<c16, d<="" g="" th=""><th>340.8 (:</th><th>±19.1)</th><th><.001</th><th>∑C18:1,2,3</th><th>-30.1 (±2.18)</th><th><.001</th><th>970</th></c16,>	340.8 (:	±19.1)	<.001	∑C18:1,2,3	-30.1 (±2.18)	<.001	970
<c16, d<="" g="" th=""><th>346.7 (±</th><th>19.5)</th><th><.001</th><th>C18:1</th><th>-27.1 (±4.6)</th><th><.001</th><th>968</th></c16,>	346.7 (±	19.5)	<.001	C18:1	-27.1 (±4.6)	<.001	968
	Best	fitting m	odel, C18:2 gets	C18:2	-36.7 (±3.9)	<.001	
	b	igger ne	gative effect	C18:3	-26.0 (±3.9)	<.001	
<c16, d<="" g="" th=""><th>346.5 (±</th><th>20)</th><th><.001</th><th>C16:0</th><th>0.39 (±7.60)</th><th>0.95</th><th>973</th></c16,>	346.5 (±	20)	<.001	C16:0	0.39 (±7.60)	0.95	973
				C18:0	0.39 (±25.2)	0.98	
				C18:1	-27.2 (±4.8)	<.001	
				C18:2	-36.7 (±4.0)	<.001	
				C18:3	-26.0 (±4.0)	<.001	

Milk	Intercept (±SE)	P-value	FA as % of Diet	Slope (±SE)	P-value	AIC
C16, g/d	453.0 (±25.4)	<.001	∑C18:1,2,3	-35.8 (±3.4)	<.001	1040
C16, g/d	461.7 (±26.1)	<.001	C18:1	-31.2 (±7.3)	<.001	1037
			C18:2	-45.8 (±6.2)	<.001	
			C18:3	-29.6 (±6.3)	<.001	
C16, g/d	414.0 (±21.3)	<.001	C16:0	79.0 (±7.1)	<.001	969
			C18:0	-15.2 (±23.6)	0.52	
			C18:1	-41.6 (±4.4)	<.001	
			C18:2	-51.8 (±3.7)	<.001	
			C18:3	-26.5 (±3.8)	<.001	

Milk FA yield	Intercept (±SE)	P-value	Diet % Variable	Slope (±SE)	P-value	AIC ³
		< 001	C10.1 2 2	26.0 (+2.20)	< 001	1027
CIð lolal, g/u	307.9 (±25.3)	<.001	C18:1,2,5	20.0 (±3.39)	<.001	1037
C18 total, g/d	320.6 (±25.4)	<.001	C18:1	31.9 (±7.0)	<.001	1033
			C18:2	11.8 (±5.9)	0.05	
			C18:3	35.4 (±6.0)	<.001	
C18 total, g/d	309.6 (±25.8)	<.001	C16:0	6.8 (±10.9)	0.53	1030
			C18:0	82.4 (±36.2)	0.02	
			C18:1	27.5 (±6.95)	<.001	
			C18:2	8.2 (±5.8)	0.16	
			C18:3	32.6 (±5.8)	<.001	
				2019 data 9	set	18

	Intercept (±SE)	Diet Variable	Slope (±SE)	P-value	AIC ³
Milk FA ¹ , g/d	1099.3 (±59.1)	∑C18:1,2,3	-38.5 (±6.4)	<.001	1165
Milk FA ¹ , g/d	1127.6 (±60.1)	C18:1	-24.7 (±12.7)	0.05	1157
		C18:2	-70.2 (±10.8)	<.001	
		C18:3	-18.0 (±10.9)	0.10	
Milk FA ¹ , g/d	1070.1 (±57.2)	C16:0	83.7 (±17.8)	<.001	1137
		C18:0	68.9 (±59.2)	0.25	
		C18:1	-39.8 (±11.2)	<.001	
		C18:2	-79.5 (±9.4)	<.001	
		C18:3	-19.0 (±9.5)	0.05	

2019 data set

Effect of different diet FA on total Milk FAT yield

Milk FA class	Diet C16:0	Diet C18:0 ???	Diet C18:1 & C18:3	Diet C18:2
<c16< td=""><td>No effect</td><td>No effect?</td><td>Decreases</td><td>Decreases</td></c16<>	No effect	No effect?	Decreases	Decreases
C16	Increases	No effect?	Decreases	Decreases
C18	No effect	Increase	Increase	Increase?
Total	Increase	Increase?	Decrease	Decrease

De novo inhibition vs. substitution

- Substitution theory (wrong one?)
 - adding dietary FA into milk fat <u>displaces</u> shorter chain FA
 - Implies that milk fat secretion is regulated not FA synthesis and transport
 - Why doesn't palmitic do this? Only C18 FA do this? Stearic too?
- De novo inhibition (what I think)
 - Unsaturated FA form bioactive FA in rumen to reduce de novo FA synthesis in Mammary
 - Also provide exogenous C18 FA for milk fat
 - Later compensates for former
 - Definitely true for linoleic; Linoleic even inhibits its own transfer into milk fat
 - Lessor effect for oleic and linolenic (for sure) / no effect for stearic(?)
- Could be all of oleic and linoleic effect and part of linoleic effect is substitution
 - But then stearic should do same as oleic and linoleic
- Remember biological mechanisms should work on a molar basis

	Intercept (±SE)	Diet Variable	Slope (±SE)	P-value	AIC ³
Milk FA¹, mol/d	4.80 (±0.25)	∑C18:1,2,3	-0.21 (±0.03)	<.001	197
Milk FA¹, mol/d	4.91 (±0.25)	C18:1	-0.15 (±0.05)	0.008	190
		C18:2	-0.35 (±0.04)	<.001	
		C18:3	-0.13 (±0.04)	<.001	
Milk FA¹, mol/d	4.70 (±0.25)	C16:0	0.32 (±0.08)	<.001	175
		C18:0	0.27 (±0.27)	0.31	
		C18:1	-0.21 (±0.05)	<.001	
		C18:2	-0.40 (±0.04)	<.001	
		C18:3	-0.14 (±0.04)	0.001	
				2019 data set	22

Current and future FA digestion

- Current model uses classes of FA for digestibility of "FA" in that feed
 - These are user adjustable variables with library defaults
- These are then summed linearly by feed for diet
- Cannot measure digestion of the 4 individual C18:? FA
 - eg: C18:2 consumed C18:2 in feces could be absorption or luminal biohydrogenation
- Can measure digestion of combined C18 FA (Σ C18 eaten– Σ C18 in feces)
- And also C16 (separately from C18)
- Future models may predict effect of 5 individual diet FA on digestion of C18 and C16
 - Something like this:
 - C16 dig = B0 + B1*C16 + B2*C18:0 + B3*C18:1 + B4*C18:2 + B5*Diet C18:3
 - C18 dig = B6 + B7*C16 + B8*C18:0 + B9*C18:1 + B10*C18:2 + B11*Diet C18:3
 - Quadratic and interaction terms might be needed

Measuring DE is doable

- DE is a large and variable loss
- Diet DE can be measured DIRECTLY by most research laboratories
 - Need a shovel, scale, and a bomb calorimeter (students useful too!, plus some cows)
 - Actual is always better than predicted
- Then use NRC model predictions to get at <u>predicted</u> ME and NE
 - better (I think) than going from diet chemistry to predicted DE then predicting ME then predicting NE
 - NRC 8 much more transparent about this process
- So measure digestible Organic Matter fractions <u>PLUS</u> direct DE
 - Combustible energy (bomb calorimeter)
 - Starch, N, NDF, OM
 - C16 and C18 FA digestibility

FA effect on methane?

- Do all FA affect methane equally?
- Especially FA we feed, and not C12 or C14